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X-ray transform on the plane

• All the planar lines are parametrized by (θ, t) ∈ [0,π]× R:

ℓ =
{
(−s sin θ + t cos θ, s cos θ + t sin θ) : s ∈ R

}
.

The X-ray transform of f (x , y) on R2 is defined by

Rf (θ, t) :=
∫
ℓ
f =

∫ ∞

−∞
f (−s sin θ + t cos θ, s cos θ + t sin θ)ds.

This is considered to be the measurements of CT scanners for normal tissue. The FBP

formula f = (−∂2x − ∂2y )
1/2 ◦ RT ◦ Rf is well-known.

• We consider a model of human body f containing a metal region D such as dental

implants, stents in blood vessels, and etc. We observe that the metal streaking artifacts

caused by beam hardening effect in the energy level of X-ray. The main term is the filtered

back-projection of nonlinear term

(−∂2x − ∂2y )
1/2 ◦ RT

[
(R1D)

2],
This is a conormal distribution whose singular support is the streaking artifact.
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Figures: metal streaking artifacts
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Conormal distributions

Definition 1 (Conormal distributions)

Let X be an N-dim manifold, and let Y be a closed submanifold of X . We say that

u ∈ D ′(X ) is conormal with respect to Y of degree m if L1· · ·Lµu ∈ ∞H loc
(−m−N/4)(X ) for all

µ = 0, 1, 2, . . . and all vector fields L1, . . . , Lµ tangential to Y . Denote by Im
(
N∗(Y )

)
the

set of all distributions on X conormal wrt Y of degree m. Note that WF(u) ⊂ N∗(Y ) \ 0.

• The characteristic function of a domain:

1D ∈ I−1/2−n/4(N∗(∂D)
)
for D ⊂ Rn,

which is a domain with smooth boundary.

DD

x0

• The Schwartz kernel of a PsDO:∫
Rn

e i(x−y )·ξa(x , ξ)dξ ∈ Im
(
N∗(∆)

)
,

∆ = {(x , x)} for a(x , ξ) ∈ Sm(Rn×Rn).

x

y x = y

(−ξ, ξ) (ξ,−ξ)

3/15



Geodesic X-ray transform 1

Suppose that (M, g) is a compact nontrapping simple Riemannian manifold with strictly

convex smooth boundary. A map π : S(M) → M is the natural projection. Denote by

∂−S(M) the set of all unit incoming tangent vectors on the boundary ∂M:

∂−S(M) = {w ∈ S(M) : π(w) ∈ ∂M, ⟨ν,w⟩ < 0},

where ν(x) is the unit outer normal vector at x ∈ ∂M. Note that the nontrapping condition

ensures that ∂−S(M) is identified with the manifold of all the normal geodesics on (M, g):

∂−S(M) ≃ G := {γv : ∇γ̇v (t)γ̇v (t) = 0, γ̇v (0) = v ∈ S(M)}.

The geodesic X-ray transform of a function (more precisely a half-density) f on M is defined by

X f (w) :=
∫ τ(w )

0
f
(
γw (s)

)
ds, w ∈ ∂−S(M),

where τ(w) is the exit time of γw .
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Geodesic X-ray transform 2

Set n = dim(M). Then dim
(
S(M)

)
= 2n− 1 and dim

(
∂−S(M)

)
= 2n− 2.

Let F : S(M) → ∂−S(M) be the submersion defined by F
(
γ̇w (t)) = w for w ∈ ∂−S(M) and

t ∈ [0, τ(w)]. Then we have X = F∗ ◦ π∗ and XT = π∗ ◦ F ∗. See Holman-Uhlmann (2018).

Proposition 2

X is an elliptic Fourier integral operator, and its Schwartz kernel belongs to

I−n/4(∂−S(M)×M int,C ′
X ;Ω1/2

∂−S(M)×M int

)
,

where CX is the canonical relation of X : we say that (ξ, η) ∈ CX if ∃v ∈ S(M int) such that

ξ ∈ T ∗
F (v )

(
∂−S(M)

)
\ {0}, η ∈ T ∗

π(v )(M
int) \ {0}, DF |Tv ξ = Dπ|Tv η,
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Assumption 1

• Assume that dim(M) = 2 or (M, g) is a space of constant curvature.

This ensures that all the Jacobi fields are of the form scalar function × parallel transport.

• Suppose that the metal region D ⊂ M int is

a disjoint union of Dj (j = 1 . . . , J) which
are simply connected, strictly convex and

bounded with smooth boundaries ∂Dj .
M

D j

Dk

Dl
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A hypersurface L surrounding the metal region D

• For any j and x ∈ ∂Dj , denote by νj (x) the unit outer normal vector at x . Consider the

tangent hyperplane expx νj (x)
⊥ ∩M int at x ∈ ∂Dj .

• There are some common tangent hyperplanes of ∂Dj and ∂Dk for j ̸=k . In this case there

is common tangent geodesics in such hyperplanes. The union of all these geodesics forms

a conical or cylindrical hypersurface denoted by L
(±)
jk . Set L :=

∪(
L

(+)
jk ∪L

(−)
jk

)
.
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Assumption 2 (The simple model of beam hardening effect)

Let E ≧ 0 be a parameter describing the energy level of the X-ray beam, and let E0 be the

fixed standard level for the normal tissue. The measurement P is of the form:

P = − log

{∫ ∞

0
ρ(E ) exp(−X fE )dE ,

}
,

where ρ(E ) is a probability density function on [0,∞) and is called the spectral function. Let

fCT be the FBP of P . We employ the simple model of the form

fE (x) = fE0
(x) + α(E − E0)1D(x), ρ(E ) =

1

2ε
1[E0−ε,E0+ε](E )

with small parameters α > 0 and ε > 0.
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Main Theorem

Then the nonlinear effect fMA in the CT image becomes

fMA := fCT − fE0
=

∞

∑
k=1

(αε)2kAkQXT [(X 1D)
2k ] mod C∞(M int), {Ak} ⊂ R,

where Q is a parametrix of XT ◦ X : QXTX = Id modulo smoothing operators locally.

Our main result is as follows:

Theorem 3

fMA ∈ I−3n/4−1/2(N∗(L )
)
away from ∂D, and σprin

(
QXT [(X 1D)

2]
)
̸= 0.

• Park-Choi-Seo (2017) proved that WF(fMA) ⊂ N∗(L ) for M = R2.

• Palacios-Uhlmann-Wang (2018) proved Theorem 3 for M = R2.

• C (2022) proved Theorem 3 for the d-plane transform on Rn.

We could NOT understand the meaning in many parts of this paper.
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What does Theorem 3 say?

• If ∂Dj and ∂Dk have a common tangent hyperplane, then the conormal singularities

propagate along the common tangent geodesic. See the left figure.

• Suppose n ≧ 3. If ∂Dj and ∂Dk have a common tangent geodesic, but the conormal

directions at the tangent points are different, then the conormal singularities do not

propagate along the common tangent geodesic. See the right figure.
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Outline of the proof of Theorem 3

• 1Dj
∈ I−1/2−n/4(N∗(∂Dj ) \ 0

)
.

• X 1Dj
∈ I−(n+1)/2(N∗(Σj ) \ 0

)
with some hypersurface Σj in ∂−S(M).

• For j ̸=k , Σj is transversal to Σk .

D D

• Set Σjk := Σj ∩ Σk for short. For j ̸=k ,

X 1Dj
· X 1Dk

∈
{
I−(n+1)/2−1

(
N∗(Σjk ) \ 0

)
at Σjk ,

I−(n+1)/2(N∗(Σj ) \ 0
)
+ I−(n+1)/2(N∗(Σk ) \ 0

)
away from Σjk .
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Key: CXT ◦ Σjk \ 0 = N∗(Ljk) \ 0

• Fix arbitrary geodesic γw ≃ w ∈ Σjk .

• If ξ, ξ̃ ∈ T ∗
w

(
∂−S(M)

)
, w = F (v) = F (ṽ), π(v) ∈ ∂Dj , π(ṽ) ∈ ∂Dk ,

DF |Tv ξ = Dπ|Tv η, η ∈ N∗
v (∂Dj ) \ {0}, DF |Tṽ ξ̃ = Dπ|Tṽ η̃, η̃ ∈ N∗

ṽ (∂Dk ) \ {0},

then ξ and ξ̃ are linearly independent, and the nonlinear effect on the geodesic γw creates

two-dimensional singularity span⟨ξ, ξ̃⟩ in T ∗
w

(
∂−S(M)

)
due to the simplicity condition.

• WLOG WMA η and η̃ are unit covectors.

• WLOG WMA η is the parallel transport of η̃ if η ∥ η̃.

• We shall show that if η̃ is the parallel transport of η, then

CT
X ◦ span⟨ξ, ξ̃⟩ =

∪
a∈R

(the parallel transport of η along γw ) =
∪

t∈[0,τ(w )]

N∗
γw (t)

(Ljk ),

otherwise, CT
X ◦ span⟨ξ, ξ̃⟩ = N∗

π(v )(∂Dj )
∪
N∗

π(ṽ )(∂Dk ).
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When η̃ is the parallel transport of η

• Set γw (t0) = π(η) ∈ ∂Dj and γw (t̃0) = π(η̃) ∈ ∂Dk , and suppose η̃ = P(t̃0, t0;γw )T η,

where P(t0, t̃0;γw ) is the parallel transport of Tγw (t̃0)(M) onto Tγw (t0)(M) along γw .

Set η(s) := P(s, t0;γw )T η ∈ T ∗
γw (s)

(M int) for s ∈ (0, τ(w)). Then η(t̃0) = η̃.

• Let k(x) be a sectional curvature at x ∈ M, which is a constant when n ≧ 3.

• Let a(t; s), b(t; s) ∈ C∞(0, τ(w)) be solutions to

att(t; s) + k
(
γw (t)

)
a(t; s) = 0, a(s; s) = 1, at(s; s) = 0,

btt(t; s) + k
(
γw (t)

)
b(t; s) = 0, b(s; s) = 0, bt(s; s) = 1.

• ∆(t0, t̃0; s) := det

[
a(t0; s) a(t̃0; s)

b(t0; s) b(t̃0; s)

]
never vanish due to the simplicity. If we set

ξ(s) :=
b(t̃0; s)

∆(t0, t̃0; s)
ξ − b(t0; s)

∆(t0, t̃0; s)
ξ̃ ∈ span⟨ξ, ξ̃⟩, s ∈ (0, τ(w)),

then we have DF |T
γ̇w (s)

ξ(s) = Dπ|T
γ̇w (s)

η(s) in T ∗
γ̇w (s)

(
S(M int)

)
for s ∈ (0, τ(w)).
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ξ(s) in span⟨ξ, ξ̃⟩ ⊂ T ∗
F (γ)

(
∂−S(M)

)
and η(s) in T ∗(S(M int)

)
for K = −1

K=-1

ξ

ξ~

F(γ')

ξ(s)
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