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X-ray transform on the plane

e All the planar lines are parametrized by (6, t) € [0, 7] x R:
0= {(—ssinf+ tcosfh,scosh + tsinb) : s € R}.
The X-ray transform of f(x,y) on R? is defined by
RF(6,t) := /p.f = /j:o f(—ssinf + tcosf, scosf + tsinf)ds.
This is considered to be the measurements of CT scanners for normal tissue. The FBP
formula f = (—92 — 8}2,)1/2 oRT o Rf is well-known.

e We consider a model of human body f containing a metal region D such as dental
implants, stents in blood vessels, and etc. We observe that the metal streaking artifacts
caused by beam hardening effect in the energy level of X-ray. The main term is the filtered
back-projection of nonlinear term

(=05 —97)t 2o RT[(R1p)?],

This is a conormal distribution whose singular support is the streaking artifact. y
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Figures: metal streaking artifacts
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The main part of artifacts: (—92 —92)!/2RT [(R1p)?].
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Conormal distributions

Definition 1 (Conormal distributions)

Let X be an N-dim manifold, and let Y be a closed submanifold of X. We say that
loc

u € 9'(X) is conormal with respect to Y of degree m if Ly- - Lyu e °°H< m—N/4) (X) for all

#=0,1,2,... and all vector fields Ly, ..., L, tangential to Y. Denote by I™(N*(Y)) the
set of all distributions on X conormal wrt Y of degree m. Note that WF(u) C N*(Y)\ 0.

e The characteristic function of a domain: e The Schwartz kernel of a PsDO:
1p € [-1/2-7/4(N*(9D)) for D C R”, / eV Ca(x, £)dE € I™(N*(A)),
which is a domain with smooth boundary. A — {(x,x)} for a(x,&) € S™(R"xR").
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Geodesic X-ray transform 1

Suppose that (M, g) is a compact nontrapping simple Riemannian manifold with strictly
convex smooth boundary. A map 77: S(M) — M is the natural projection. Denote by
0_S(M) the set of all unit incoming tangent vectors on the boundary dM:

d_S(M) ={w € S(M) : t(w) € M, (v, w) < 0},

where v(x) is the unit outer normal vector at x € dM. Note that the nontrapping condition
ensures that d_S(M) is identified with the manifold of all the normal geodesics on (M, g):

0-S(M) =G :={7v: VT (t) =0, 7,(0) =v € SM)}.
The geodesic X-ray transform of a function (more precisely a half-density) f on M is defined by
T(w)

XF(w) ;:/0 F(w(s))ds, wed_S(M),

where T(w) is the exit time of 7,,.
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Geodesic X-ray transform 2

Set n = dim(M). Then dim(S(/\/l)) =2n—1 and dim(a,S(/\/l)) =2n—2.

Let F: S(M) — 9_5(M) be the submersion defined by F (7 (t)) = w for w € 9_S5(M) and
€ [0,7(w)]. Then we have X = F, o t* and X T = 7, o F*. See Holman-Uhlmann (2018).

Proposition 2

X is an elliptic Fourier integral operator, and its Schwartz kernel belongs to
—n/4 int 1/2
[="*(0_S(M)xM™ ,CX,Qa S(M)xl\/l'"t)

where Cy is the canonical relation of X': we say that (¢,n) € Cy if 3v € S(M™™) such that

£ T2, (-S(M)\ {0}, 7€ T, (M™)\ {0}, DF|J¢=Dn|ly,
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Assumption 1

e Assume that dim(M) =2 or (M, g) is a space of constant curvature.

This ensures that all the Jacobi fields are of the form scalar function X parallel transport.

e Suppose that the metal region D C M"t is
a disjoint union of D; (j =1...,J) which
are simply connected, strictly convex and
bounded with smooth boundaries 0D;.

M
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A hypersurface . surrounding the metal region D

e For any j and x € dD;, denote by v;(x) the unit outer normal vector at x. Consider the
tangent hyperplane exp, vj(x)- N M at x € aD;.

e There are some common tangent hyperplanes of dD; and 0Dy for j7k. In this case there
is common tangent geodesics in such hyperplanes. The union of all these geodesics forms
a conical or cylindrical hypersurface denoted by 92”]5( ) Set = U( )y .,%( )>.
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Assumption 2 (The simple model of beam hardening effect)

Let E = 0 be a parameter describing the energy level of the X-ray beam, and let Ey be the
fixed standard level for the normal tissue. The measurement P is of the form:

P = —log {/Ooop(E) exp(—X'fg)dE, } ,

where p(E) is a probability density function on [0, c0) and is called the spectral function. Let
fcT be the FBP of P. We employ the simple model of the form

fe () = iy () + a(E — Eo)Lp(x). p(E) = 5-Ligy-c.g4e)(E)

with small parameters & > 0 and € > 0.
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Then the nonlinear effect fyya in the CT image becomes

fMA = fCT = fEO = Z (a8)2kAkQXT[(X1D)2k] mod Coo(Mint), {Ak} C ]R,
k=1

where Q is a parametrix of X7 o X: QX TX = Id modulo smoothing operators locally.

Our main result is as follows:

Theorem 3

fia € 1730412 (N*(L)) away from dD, and 0pyin(QX T [(X1p)?]) # 0.

e Park-Choi-Seo (2017) proved that WF(fiya) C N*(.Z) for M = R?.
e Palacios-Uhlmann-Wang (2018) proved Theorem 3 for M = R2.
e C (2022) proved Theorem 3 for the d-plane transform on R”.

We could NOT understand the meaning in many parts of this paper.
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What does Theorem 3 say?

e If 9D; and dD) have a common tangent hyperplane, then the conormal singularities
propagate along the common tangent geodesic. See the left figure.

e Suppose n = 3. If dD; and 0Dy have a common tangent geodesic, but the conormal
directions at the tangent points are different, then the conormal singularities do not
propagate along the common tangent geodesic. See the right figure.
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Outline of the proof of Theorem 3

o 1p, € [7Y/27n/4(N*(aD;) \ 0).
* Xlp, € 1=(r+1)/2(N*(x%;) \ 0) with some hypersurface X; in _S(M).
e For j#k, ¥; is transversal to X.

.5,

7
°

o Set Lj := X; N Xy for short. For j#k,

1= (D271 (N (2) \ 0) at T,

Xlp, - Xlp, €
By {/—<"+1>/2(N*(Zj)\o)+/—("+1>/2(/v*(zk)\o) away from .
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Fix arbitrary geodesic 7, >~ w € Zj.
If &, ¢ e Ty(0-S(M)), w=F(v)=F(v), mn(v)€aD;, mn(¥)€E D,

DF|y¢=Dnlyy, 1€ N;@D;)\{0}, DF|J¢=Dnl|jq, e N;(dD)\{0},

then ¢ and ¢ are linearly independent, and the nonlinear effect on the geodesic 7,, creates
two-dimensional singularity span(&, &) in T (0-S5(M)) due to the simplicity condition.
WLOG WMA 7 and 7 are unit covectors.

WLOG WMA 7 is the parallel transport of 7 if 7 || 7.

We shall show that if 77 is the parallel transport of 7, then

Clospan(¢ &) = U (the parallel transport of 77 along vy ) = U N*W( )(C ),
acR te[0,7(w)]
otherwise, CJospan(¢,¢&) = N () (0D))UN>: o (9Dx).
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When 7j is the parallel transport of 7

e Set 1w (to) = 7(17) € 9D; and 7w (%) = 71(7j) € Dy, and suppose 7j = P(fy, to; yw) 7,
where P(to, fo; Yw) is the parallel transport of T, (z)(M) onto T, (. \(M) along yw.
Set 17(s) := P(s, to; Yw) "1 € T;‘W<S)(Mi”t) for s € (0, 7(w)). Then 5(&) = 7.

e Let k(x) be a sectional curvature at x € M, which is a constant when n = 3.

e Let a(t;s), b(t;s) € C*(0,T(w)) be solutions to

an(t;s) + k(’yw(t))a(t;s) =0, a(s;s) =1, a(s;s) =0,

() b(
a(tp;s) a(fo;s)
b(to;s) b(fo; s)

£(6) = ot se - 2D g gpante. ), s € (0t(w))

e A(tp, fy; s) := det [

then we have DF\;—W(S)C(S) = DH\TW(S)U(S) in T2 ) (S(M"t)) for s € (0, T(w)).
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&(s) in span(&, &) C TE ) (0-S(M)) and 7(s) in T*(S(M™)) for K = —1
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