Double fibration transforms with conjugate points

Hiroyuki Chihara (University of the Ryukyus)

29 July 2025

AIP 2025

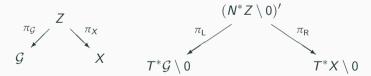
MS-04 Integral geometry, rigidity and geometric inverse problems

FGV EMAp. Rio de Janeiro

Double fibration

Following Mazzucchelli-Salo-Tzou [2], we introduce double fibration transforms.

- Let \mathcal{G} and X be oriented smooth manifolds without boundaries. $N := \dim(\mathcal{G})$ and $n := \dim(X)$. Denote by $d\mathcal{G}$ and dX the orientation forms of \mathcal{G} and X respectively.
- Let Z be an oriented embedded submanifold of $\mathcal{G} \times X$, and let dZ be the orientation form.
- Assume that $N+n>\dim(Z)>N\geqq n\geqq 2$, and set $n':=\dim(Z)-N$ and n'':=n-n'. Then $\dim(Z)=N+n'$, n=n'+n'' and n', $n''=1,\ldots,n-1$.



• We assume that Z is a double fibration, that is, the natural projections $\pi_{\mathcal{G}}: Z \rightarrow \mathcal{G}$ and $\pi_X: Z \rightarrow X$ are submersions respectively.

Orientation forms on $G_z := \pi_x \circ \pi_{\mathcal{G}}^{-1}(z)$ and $H_x := \pi_{\mathcal{G}} \circ \pi_X^{-1}(x)$

- $G_z := \pi_x \circ \pi_{\mathcal{G}}^{-1}(z)$ becomes an n'-dim submanifold of X for any $z \in \mathcal{G}$, and $H_x := \pi_{\mathcal{G}} \circ \pi_X^{-1}(x)$ forms an (N n'')-dim submanifold of \mathcal{G} for any $x \in X$.
- Fix arbitrary $(z, x) \in Z$, and let $\{v_1, \ldots, v_n\}$ and $\{w_1, \ldots, w_N\}$ be bases of $T_x X$ and $T_z \mathcal{G}$ respectively such that

$$T_{(z,x)}Z = \operatorname{span}\langle v_1, \ldots, v_{n'}, w_1, \ldots, w_N \rangle = \operatorname{span}\langle v_1, \ldots, v_n, w_1, \ldots, w_{N-n''} \rangle.$$

The induced orientation forms dG_z on G_z and dH_x on H_x are given by

$$\begin{split} dG_{z}\big(d\pi_{X}(v_{1}),\ldots,d\pi_{X}(v_{n'})\big) &:= dZ_{\pi_{\mathcal{G}}^{-1}(z)}(v_{1},\ldots,v_{n'}) \\ &= \frac{dZ(v_{1},\ldots,v_{n'},w_{1},\ldots,w_{N})}{d\mathcal{G}\big(d\pi_{\mathcal{G}}(w_{1}),\ldots,d\pi_{\mathcal{G}}(w_{N})\big)}, \\ dH_{x}\big(d\pi_{\mathcal{G}}(w_{1}),\ldots,d\pi_{X}(w_{N-n''})\big) &:= dZ_{\pi_{X}^{-1}(x)}(w_{1},\ldots,w_{N-n''}) \\ &= \frac{dZ(v_{1},\ldots,v_{n},w_{1},\ldots,w_{N-n''})}{dX\big(d\pi_{X}(v_{1}),\ldots,d\pi_{X}(v_{n})\big)}. \end{split}$$

Double fibration transform

Suppose that a weight function $\kappa(z,x) \in C^{\infty}(\mathcal{G} \times X)$ is nowhere vanishing. A double fibration transform \mathcal{R} associated with the double fibration Z is defined by

$$\mathcal{R}f(z) := \left(\int_{G_z} \kappa(z, x) \frac{f}{|dX|^{1/2}}(x) dG_z(x) \right) |d\mathcal{G}(z)|^{1/2}$$

for $f \in \mathcal{D}(X, \Omega_X^{1/2})$. The adjoint \mathcal{R}^* is given by

$$\mathcal{R}^* u(x) = \left(\int_{\mathcal{H}_x} \overline{\kappa(z, x)} \frac{u}{|d\mathcal{G}|^{1/2}}(z) d\mathcal{H}_x(z) \right) |dX(x)|^{1/2}$$

for $u \in \mathcal{D}(\mathcal{G}, \Omega_{\mathcal{G}}^{1/2})$. Then we deduce that

$$\mathcal{R}: \mathscr{D}(X,\Omega_X^{1/2}) \to \mathscr{E}(\mathcal{G},\Omega_\mathcal{G}^{1/2}), \quad \mathcal{R}^*: \mathscr{D}(\mathcal{G},\Omega_\mathcal{G}^{1/2}) \to \mathscr{E}(X,\Omega_X^{1/2}),$$

are continuous linear mappings, and so are

$$\mathcal{R}: \mathscr{E}'(X,\Omega_X^{1/2}) \to \mathscr{D}'(\mathcal{G},\Omega_\mathcal{G}^{1/2}), \quad \mathcal{R}^*: \mathscr{E}'(\mathcal{G},\Omega_\mathcal{G}^{1/2}) \to \mathscr{D}'(X,\Omega_X^{1/2}).$$

More precisely $\mathcal R$ and $\mathcal R^*$ are elliptic Fourier integral operators.

Mapping properties of double fibration transforms

Theorem 1 ([2, Theorem 2.2] & [Hörmander IV, Theorem25.2.2)

Suppose that Z is a double fibration with $\dim(Z) = N + n'$. Then \mathcal{R} and \mathcal{R}^* are elliptic Fourier integral operators of order -(N+2n'-n)/4 with canonical relations $(N^*Z\setminus 0)'$ and $((N^*Z\setminus 0)^T)'$ respectively. More precisely

$$\begin{split} \mathcal{R} &\in \mathcal{I}^{-(N+2n'-n)/4} \big(\mathcal{G} \times X, N^* Z \setminus 0; \Omega_{\mathcal{G} \times X}^{1/2} \big), \\ \mathcal{R}^* &\in \mathcal{I}^{-(N+2n'-n)/4} \big(X \times \mathcal{G}, (N^* Z \setminus 0)^T; \Omega_{X \times \mathcal{G}}^{1/2} \big), \end{split}$$

where

$$N^*Z \setminus 0 = \{ (z, A(z, x)\eta, x, \eta) : (z, x) \in Z, \eta \in N_x^*G_z \setminus \{0\} \}$$

= \{ (z, \zeta, x, B(z, x)\zeta) : (z, x) \in Z, \zeta \in N_z^*H_x \ \{0\}\},

 $A(z,x) \in \text{Hom}(N_x^*G_z, T_z^*G)$ and $B(z,x) \in \text{Hom}(N_z^*H_x, T_x^*X)$ smoothly depend on $(z,x) \in Z$ respectively.

Preliminaries

For local coordinates $(z,x)=(z',z'',x',x'')\in\mathbb{R}^{N-n''}\times\mathbb{R}^{n''}\times\mathbb{R}^{n''}\times\mathbb{R}^{n''}$, There exist $\mathbb{R}^{n''}$ -valued functions $\phi(z,x')$ and b(x,z') such that we have locally

$$Z = \{x'' = \phi(z, x')\} = \{z'' = b(x, z')\}.$$

Lemma 2 ([2, Lemmas 2.4, 2.5 and 2.6])

$$\begin{split} N_{(z,x)}^* Z &= \Big\{ \Big(-\phi_z(z,x')^T \eta'', \big(-\phi_{x'}(z,x')^T \eta'', \eta'' \big) \Big) : \eta'' \in \mathbb{R}^{n''} \Big\}, \\ A(z,x) &\left[\begin{matrix} -\phi_{x'}(z,x')^T \\ I_{n''} \end{matrix} \right] \eta'' = -\phi_z(z,x')^T \eta'', \quad \eta'' \in \mathbb{R}^{n''}. \end{split}$$

Similar results hold for b(x, z') and B(z, x).

Variation fields and conjugate points

Fix arbitrary $(z, w) \in T\mathcal{G}$, and consider a curve in \mathcal{G} of the form

$$z(s) = z + sw + \mathcal{O}(s^2)$$
 near $s = 0$.

Then $(G_{z(s)})$ is said to be a variation of G_z , and the variation field $J_w: G_z \to (N_x^*G_z)^*$ associated to $(G_{z(s)})$ is defined by

$$J_w(x) := A(z, x)^* w \simeq -\phi_z(z, x') w \in (N_x^* G_z)^* \simeq N_x G_z = T_x X / T_x G_z$$

for $x \in G_z$. Note that $T_z H_x = \operatorname{Ker} (A(z,x)^*)$ since $\phi(z(s),x') = x''$ for $z(s) \in H_x$, and

$$A(z,x)^* \in \operatorname{\mathsf{Hom}} ig(T_z \mathcal{G}, (N_X^* G_z)^* ig) \simeq \operatorname{\mathsf{Hom}} ig(T_z \mathcal{G}, N_X G_z ig), \quad (z,x) \in \mathcal{Z},$$

For $z \in \mathcal{G}$ and $x, y \in \mathcal{G}_z$, set

$$V_z(x,y) := \{J_w(x) : w \in T_z \mathcal{G}, J_w(y) = 0\}.$$

Note that $\dim \bigl(V_z(x,y)\bigr) \leq n''$ holds since $\operatorname{rank}\bigl(A(z,x)^*\bigr) = n''$, and $\dim \bigl(V_z(x,y)\bigr) = \dim \bigl(V_z(y,x)\bigr)$ holds for any $z \in \mathcal{G}$ and $x,y \in \mathcal{G}_z$. cf. If $x = \exp_y(tu)$, then $J_w(x) \simeq Y(t) := tD \exp_y(tu)w$.

Z-conjugate triplets

Definition 3

Suppose that Z is a double fibration and $N \ge 2n''$. Let k = 1, ..., n''.

- Z-conjugate triplet of degree k: Let $z \in \mathcal{G}$ and let $x, y \in G_z$ with $x \neq y$. We say that (z; x, y) is a Z-conjugate triplet of degree k if $\dim(V_z(x, y)) = n'' k$.
- Regular Z-conjugate triplet of degree k: We say that a Z-conjugate triplet (z; x, y) of degree k is regular if there exit a nbd U_x of x in X, a nbd U_y of y in X, and a nbd W_z of z in G such that any Z-conjugate triplet $(z'; x', y') \in W_z \times U_x \times U_y$ is also of degree k. The set of all the regular Z-conjugate triplets of degree k is denoted by $C_{R,k}$.
- The set of all the Z-conjugate triplets which are not regular is denoted by C_S .

Lemma 4

Suppose that Z is a double fibration and $N \ge 2n''$. For any k = 1, ..., n'', $C_{R,k}$ is an (N + n')-dimensional embedded submanifold of $\mathcal{G} \times X \times X$.

Normal operators without conjugate points

$$\mathcal{R}^*\mathcal{R}f(x) = \left(\iint_{H_x \times G_z} \overline{\kappa(z, x)} \kappa(z, y) \frac{f}{|dX|^{1/2}}(y) dG_z(y) dH_x(z)\right) |dX(x)|^{1/2}, \quad x \in X.$$

Set $\mathcal{C} := (N^*Z \setminus 0)'$, which is the canonical relation of \mathcal{R} .

Theorem 5

Suppose that Z is a double fibration. In addition, we assume $N \ge 2n''$ and the following:

- $\pi_X: Z \to X$ is proper, and $\pi_X^{-1}(x)$ is connected for any $x \in X$.
- There are no Z-conjugate triplets, and $D\pi_L$ is injective at all $(z, \zeta, x, \eta) \in \mathcal{C}$.

Then $C^T \circ C$ is a clean intersection with excess e = N - n, and $\mathcal{R}^*\mathcal{R}$ is an elliptic pseudodifferential operator of order -n' on X.

Proof: Some lemmas in [2] and the assumptions guarantee the Bolker condition.

Known results on geodesic X-ray transforms with conjugate points

• Let (M,g) be a compact Riemannian manifold with strictly convex boundary. Set $\gamma_w(t) := \exp_{\pi_M(w)}(tw)$ for $w \in \partial_- SM$. Consider the geodesic X-ray fransform

$$\mathcal{X}f(w) := \left(\int_0^{\tau(w)} \kappa(\gamma_w(t), \dot{\gamma}_w(t)) \frac{f}{|dM|^{1/2}} (\gamma_w(t)) dt \right) |d\partial_- SM(w)|^{1/2}.$$

• Stefanov and Uhlmann (2012) [3]: If $v_0 = |v_0|\theta_0$ is a fold conjugate vector at p_0 , and v_0 is the only singularity of $\exp_{p_0}(v)$ on γ_{θ_0} near p_0 , then the localized normal operator is decomposed as

$$\mathcal{X}^*\chi\mathcal{X} = A + F$$
 near p_0 ,

where A is a PsDOs of order -1, and F is a FIO of order -n/2.

• Holman and Uhlmann (2018) [1]: If $C_S = \emptyset$, then

$$\mathcal{X}^*\mathcal{X} = A + \sum_{k=1}^{n-1} \sum_{\alpha=1}^{M_k} F_{k,\alpha},$$

where A is a PsDOs of order -1, and F is a FIO of order -(n-k+1)/2.

Normal operators with conjugate points

Theorem 6

Suppose that Z is a double fibration, $C_S = \emptyset$, $N \ge (n-1) + n''$ and the following:

- π_X is proper, and $\pi_X^{-1}(x)$ is connected for any $x \in X$.
- If $\pi_L^{-1}ig((z,\zeta)ig)=\{(z,\zeta,x,\eta)\}$ for $(z,\zeta,x,\eta)\in\mathcal{C}$, then $D\pi_L|_{(z,\zeta,x,\eta)}$ is injective.

Then we have a decomposition of $\mathcal{R}^*\mathcal{R}$ of the form

$$\mathcal{R}^*\mathcal{R} = A + \sum_{k=1}^{n''} \sum_{\alpha \in \Lambda_k} F_{k,\alpha},$$

where A is an elliptic PsDO of order -n' on X, $F_{k,\alpha}$ is a FIO in $\mathcal{I}^{-(n+n'-k)/2}(X\times X,\mathcal{C}'_{A_{k,\alpha}};\Omega^{1/2}_{X\times X})$ with some canonical relation of $\mathcal{C}_{F_{k,\alpha}}$, associated to the decomposition of connected components $C_{R,k}=\bigcup_{\alpha\in\Lambda_k}C_{R,k,\alpha}$.

Outline of the proof

• $\mathcal{R}^*\mathcal{R}$ is given by

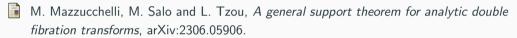
$$\frac{\mathcal{R}^*\mathcal{R}f}{|dX|^{1/2}}(x) = \iint_{H_X \times G_Z} \overline{\kappa(z,x)} \kappa(z,y) \frac{f}{|dX|^{1/2}}(y) dG_z(y) dH_x(z).$$

- Follow the idea of Holman and Uhlmann [1]: a partition of unity of $\mathcal{G} \times X \times X$.
- Set $C_{\delta} := \{(z; x, x) : z \in \mathcal{G}, x \in X\}$, which is related to the elliptic term.
- $C_{R,k,\alpha}$ are disjoint since $C_S=\emptyset$, so are $C_{R,k,\alpha}$ and C_δ . Pick up disjoint nbds $U_{k,\alpha}$ and U_δ of $C_{R,k,\alpha}$ and C_δ respectively in $\mathcal{G}\times X\times X$.
- We can find an open set U_0 in $\mathcal{G} \times X \times X$ such that

$$U_0 \bigcup U_\delta \bigcup (\cup U_{k,\alpha}) = \mathcal{G} \times X \times X, \quad U_0 \bigcap (C_\delta \bigcup (\cup C_{R,k,\alpha})) = \emptyset.$$

• Pick up a partition of unity subordinated to $\{U_0, U_{\delta}, U_{k,\alpha}\}$, and split the Schwartz kernel of $\mathcal{R}^*\mathcal{R}$. U_0 -part of $\mathcal{R}^*\mathcal{R}$ is a smoothing operator, and is absorbed in U_{δ} -part A.

References



P. Stefanov and G. Uhlmann, *The geodesic X-ray transform with fold caustics*, Anal. PDE, **5** (2012), pp.219–260

H. Chihara, *Microlocal analysis of double fibration transforms with conjugate points*, arXiv:2412.14520.