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d-plane transform on Rn



d-plane transform on Rn

• Let n = 2, 3, 4, . . . , and let d = 1, . . . , n− 1.

• Grassmannian Gd ,n := the set of all d-dimensional vector subspaces of Rn.

• For any σ ∈ Gd ,n, we have an orthogonal decomposition x = x ′ + x ′′ ∈ σ ⊕ σ⊥ = Rn.

• Affine Grassmannian G (d , n) := the set of all d-dimensional planes in Rn, i.e.,

G (d , n) := {(σ, x ′′) : σ ∈ Gd ,n, x ′′ ∈ σ⊥}.

• The d-plane transform of f ∈ S (Rn) is defined by

Rd f (σ, x
′′) :=

∫
σ
f (x ′ + x ′′)dx ′, (σ, x ′′) ∈ G (d , n),

where dx ′ is the Lebesgue measure on σ.

• R1 and Rn−1 are said to be the X-ray transsorm and the Radon transform on Rn

respectively, and R1 = Rn−1 when n = 2.
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The normal operator of the d-plane transform

• The formal adjoint of Rd of a continuous function φ on G (d , n) is explicitly given by

R∗
d φ(x) :=

1

C (d , n)

∫
O(n)

φ(x + k · σ)dk ,

where C (d , n) = (4π)dΓ(n/2)/Γ((n− 1)/2), Γ(·) is the gamma function, O(n) is the

orthogonal group, dk is the normalized measure which is invariant under rotations, and

σ ∈ Gd ,n is arbitrary. Rd and R∗
d are elliptic Fourier integral operators.

• The normal operator is R∗
dRd = (−∆Rn )−d/2, and the excess e for R∗

dRd , which is the

degeneracy of the phase function of R∗
dRd , is

e = dim
(
G (d , n)

)
− dim(Rn) = (d + 1)(n− d)− n = d(n− d − 1).

This gives the inversion formula f = (−∆Rn )d/2R∗
dRd f for f (x) = O(⟨x⟩−d−ε).

• We can consider the invertibility for more general operators arising in integral geometry via

the normal operators.
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X-ray transform on R2

Let n = 2. The X-ray transform of a function f of (x , y) ∈ R2 is defined by

R1f (θ, t) :=
∫ ∞

−∞
f (t cos θ − s sin θ, t sin θ + s cos θ)ds, (θ, t) ∈ [0,π]× R.

x

y

t

s

θ
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Conormal distributions



Conormal distributions

Definition 1 (Conormal distributions)

Let X be an N-dim manifold, and let Y be a closed submanifold of X . u ∈ D ′(X ) is said to

be conormal with respect to Y of degree m if

L1· · ·LMu ∈ ∞H loc
(−m−N/4)(X )

for all M = 0, 1, 2, . . . and all vector fields L1, . . . , LM tangential to Y . Denote by

Im(X ,N∗Y ), the set of all distributions on X conormal with respect to Y of degree m.

Note that N∗
yY := T ∗

y X/T ∗
y Y for any y ∈ Y . If u ∈ Im(X ,N∗Y ), then WF(u) ⊂ N∗Y \ 0.

∥u∥∞H(s)(R
N ) := sup

j=0,1,2,...

(∫
Aj

⟨ξ⟩2s |û(ξ)|2dξ

)1/2
,

A0 := {|ξ| < 1}, Aj := {2j−1 ≦ |ξ| < 2j}, j = 1, 2, 3, . . . .
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Conormal distributions and oscillatory integrals

Proposition 2 (Characterization of conormal distributions)

Let x = (x ′, x ′′) ∈ Rk × RN−k and let Y = Rk × {0} = {x ′′ = 0}. Then u ∈ D ′(RN )

belongs to Im+k/2−N/4(Rn,N∗Y ) if and only if there exists an amplitude

a(x ′′, ξ ′) ∈ Sm(RN−k × Rk ) such that

u(x) =
∫

Rk
e ix

′ ·ξ ′a(x ′′, ξ ′)dξ ′.

We can replace the conormal bundle N∗Y by more general Lagrangian distributions Λ. The

elements of Im(X ,Λ) is said to be Lagrangian distributions on X . These are characterized as

oscillatory integrals with more general phase functions. The distributions kernels of Fourier

integral operators are Lagrangian distributions. Rigorously we should use the set of distribution

section of the half-density bundle Im(X ,Λ;Ω1/2
X ).
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Examples of conormal distributions

• χD ∈ I−1/2−n/4(N∗∂D
)
, where D is a domain in Rn with smooth boundary.

• Set ∆ = {(x , x) : x ∈ RN}. If a(x , ξ) ∈ Sm(RN × RN ), then

K (x , y) =
∫

RN
e i(x−y )·ξa(x , ξ)dξ ∈ Im(RN × RN ,N∗∆).

DD

x0

x

y x = y

(−ξ, ξ) (ξ,−ξ)
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Double fibration transforms



Double fibration

Following Mazzucchelli-Salo-Tzou [3], we introduce double fibration transforms.

• Let G and X be oriented smooth manifolds without boundaries. N := dim(G) and
n := dim(X ). Denote by dG and dX the orientation forms of G and X respectively.

• Let Z be an oriented embedded submanifold of G×X , and let dZ be the orientation form.

• Assume that N + n > dim(Z ) > N ≧ n ≧ 2, and set n′ := dim(Z )−N and n′′ := n− n′.

Then dim(Z ) = N + n′, n = n′ + n′′ and n′, n′′ = 1, . . . , n− 1.

Z

G X

��	
πG

@@R
πX

(N∗Z \ 0)′

T ∗G \ 0 T ∗X \ 0

�
�

��+

πL Q
Q
QQs

πR

• We assume that Z is a double fibration, that is, the natural projections πG : Z→G and

πX : Z→X are submersions respectively.
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Orientation forms on Gz := πx ◦ π−1
G (z) and Hx := πG ◦ π−1

X (x)

• Gz := πx ◦ π−1
G (z) becomes an n′-dim submanifold of X for any z ∈ G, and

Hx := πG ◦ π−1
X (x) forms an (N − n′′)-dim submanifold of G for any x ∈ X .

• Fix arbitrary (z , x) ∈ Z , and let {v1, . . . , vn} and {w1, . . . ,wN} be bases of TxX and

TzG respectively such that

T(z,x)Z = span⟨v1, . . . , vn′ ,w1, . . . ,wN ⟩ = span⟨v1, . . . , vn,w1, . . . ,wN−n′′⟩.

The induced orientation forms dGz on Gz and dHx on Hx are given by

dGz
(
dπX (v1), . . . , dπX (vn′)

)
: = dZπ−1

G (z)(v1, . . . , vn′)

=
dZ (v1, . . . , vn′ ,w1, . . . ,wN )

dG
(
dπG(w1), . . . , dπG(wN )

) ,
dHx

(
dπG(w1), . . . , dπX (wN−n′′)

)
: = dZπ−1

X (x)(w1, . . . ,wN−n′′)

=
dZ (v1, . . . , vn,w1, . . . ,wN−n′′)

dX
(
dπX (v1), . . . , dπX (vn)

) .
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Double fibration transform

Suppose that a weight function κ(z , x) ∈ C∞(G×X ) is nowhere vanishing. A double fibration

transform R associated with the double fibration Z is defined by

Rf (z) :=
(∫

Gz

κ(z , x)
f

|dX |1/2 (x)dGz (x)

)
|dG(z)|1/2

for f ∈ D(X ,Ω1/2
X ). The adjoint R∗ is given by

R∗u(x) =

(∫
Hx

κ(z , x)
u

|dG|1/2 (z)dHx (z)

)
|dX (x)|1/2

for u ∈ D(G,Ω1/2
G ). Then we deduce that

R : D(X ,Ω1/2
X ) → E (G,Ω1/2

G ), R∗ : D(G,Ω1/2
G ) → E (X ,Ω1/2

X ),

are continuous linear mappings, and so are

R : E ′(X ,Ω1/2
X ) → D ′(G,Ω1/2

G ), R∗ : E ′(G,Ω1/2
G ) → D ′(X ,Ω1/2

X ).

More precisely R and R∗ are elliptic Fourier integral operators.
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Mapping properties of double fibration transforms

Theorem 3 ([3, Theorem 2.2] & [Hörmander IV, Theorem25.2.2)

Suppose that Z is a double fibration with dim(Z ) = N + n′. Then R and R∗ are elliptic

Fourier integral operators of order −(N + 2n′ − n)/4 with canonical relations (N∗Z \ 0)′ and(
(N∗Z \ 0)T

)′
respectively. More precisely

R ∈ I−(N+2n′−n)/4(G×X ,N∗Z \ 0;Ω1/2
G×X

)
,

R∗ ∈ I−(N+2n′−n)/4(X × G, (N∗Z \ 0)T ;Ω1/2
X×G

)
,

where

N∗Z \ 0 =
{(

z ,A(z , x)η, x , η
)

: (z , x) ∈ Z , η ∈ N∗
xGz \ {0}

}
=

{(
z , ζ, x ,B(z , x)ζ

)
: (z , x) ∈ Z , ζ ∈ N∗

zHx \ {0}
}
,

A(z , x) ∈ Hom(N∗
xGz ,T

∗
z G) and B(z , x) ∈ Hom(N∗

zHx ,T
∗
x X ) smoothly depend on

(z , x) ∈ Z respectively.
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Examples of double fibration transforms

• d-plane transform on Rn: G := G (d ,m), X := Rn.

• Geodesic X-ray transform: Let (M, g) be a compact and nontrapping Riemannian

manifold with a strictly convex boundary. Denote by ν(x) the unit outer normal vector at

x ∈ ∂M. Then

G := ∂−SM = {(x , u) ∈ SM : x ∈ ∂M, ⟨u, ν(x)⟩ < 0}, X := M int.

• Null bicharacteristics: Let P be a real-principal-type pseudodifferential operator on a

manifold X with the principal symbol pm(x , ξ). Let G be the set of all Hamilton flows for

pm(x , ξ) = 0 on T ∗X , and consider the integration over all the γ ∈ G.

• Light ray transform: This is a special case of the above. Let (M, g) be a Lorentzian

manifold, and set P be the d’Alembertian.
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Z -conjugate points



Preliminaries

For local coordinates (z , x) = (z ′, z ′′, x ′, x ′′) ∈ RN−n′′ × Rn′′ × Rn′ × Rn′′ , There exist

Rn′′ -valued functions ϕ(z , x ′) and b(x , z ′) such that we have locally

Z = {x ′′ = ϕ(z , x ′)} = {z ′′ = b(x , z ′)}.

Lemma 4 ([3, Lemmas 2.4, 2.5 and 2.6])

N∗
(z,x)Z =

{(
−ϕz (z , x

′)T η′′,
(
−ϕx ′(z , x

′)T η′′, η′′)) : η′′ ∈ Rn′′
}
,

A(z , x)

[
−ϕx ′(z , x

′)T

In′′

]
η′′ = −ϕz (z , x

′)T η′′, η′′ ∈ Rn′′ .

Similar results hold for b(x , z ′) and B(z , x).
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Variation fields and conjugate points

Fix arbitrary (z ,w) ∈ TG, and consider a curve in G of the form

z(s) = z + sw +O(s2) near s = 0.

Then (Gz(s)) is said to be a variation of Gz , and the variation field Jw : Gz → (N∗
xGz )∗

associated to (Gz(s)) is defined by

Jw (x) := A(z , x)∗w ≃ −ϕz (z , x
′)w ∈ (N∗

xGz )
∗ ≃ NxGz = TxX/TxGz

for x ∈ Gz . Note that TzHx = Ker
(
A(z , x)∗

)
since ϕ

(
z(s), x ′

)
= x ′′ for z(s) ∈ Hx , and

A(z , x)∗ ∈ Hom
(
TzG, (N∗

xGz )
∗) ≃ Hom

(
TzG,NxGz

)
, (z , x) ∈ Z ,

For z ∈ G and x , y ∈ Gz , set

Vz (x , y) := {Jw (x) : w ∈ TzG, Jw (y) = 0}.

Note that dim
(
Vz (x , y)

)
≦ n′′ holds since rank

(
A(z , x)∗

)
= n′′, and

dim
(
Vz (x , y)

)
= dim

(
Vz (y , x)

)
holds for any z ∈ G and x , y ∈ Gz .

cf. If x = expy (tu), then Jw (x) ≃ Y (t) := tD expy (tu)w .
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Z -conjugate triplets

Definition 5

Suppose that Z is a double fibration and N ≧ 2n′′. Let k = 1, . . . , n′′.

• Z -conjugate triplet of degree k : Let z ∈ G and let x , y ∈ Gz with x ̸=y . We say that

(z ; x , y) is a Z -conjugate triplet of degree k if dim
(
Vz (x , y)

)
= n′′ − k .

• Regular Z -conjugate triplet of degree k : We say that a Z -conjugate triplet (z ; x , y) of

degree k is regular if there exit a nbd Ux of x in X , a nbd Uy of y in X , and a nbd Wz of

z in G such that any Z -conjugate triplet (z ′; x ′, y ′) ∈ Wz×Ux×Uy is also of degree k .

The set of all the regular Z -conjugate triplets of degree k is denoted by CR,k .

• The set of all the Z -conjugate triplets which are not regular is denoted by CS .
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How to describe Z -conjugacy 1/2

Let (z0; x0, y0) be a Z -conjugate triplet of degree k = 1, . . . , n′′. Z is locally expressed by ϕ

and ψ as {x ′′ = ϕ(z , x ′)} near (z0, x0) and {y ′′ = ψ(z , y ′)} near (z0, y0) respectively, and

Vz0(x0, y0) =
{

ϕz (z0, x
′
0)w : w ∈ Ker

(
ψz (z0, y

′
0)
)}

.

Set ϕ = [ϕ(1), . . . , ϕ(n′′)]T and ψ = [ψ(1), . . . ,ψ(n′′)]T . Then {ϕ
(1)
z , . . . , ϕ

(n′′)
z } and

{ψ
(1)
z , . . . ,ψ

(n′′)
z } are linearly independent near (z0, x0) and (z0, y0) respectively. Note that

Ker
(
ψz (z0, y

′
0)
)
= span

〈
ψ
(1)
z (z0, y

′
0)

T , . . . ,ψ
(n′′)
z (z0, y

′
0)

T
〉⊥

in RN .

We deduce that dim
(
Vz0(x0, y0)

)
= n′′ − k is equivalent to

dim
(
span

〈
ϕ
(1)
z (z0, x

′
0), . . . , ϕ

(n′′)
z (z0, x

′
0)
〉
∩ span

〈
ψ
(1)
z (z0, y

′
0), . . . ,ψ

(n′′)
z (z0, y

′
0)
〉)

= k . (1)

We express (1) by k equations.
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How to describe Z -conjugacy 2/2

Denote by {ψ̃
(1)
z , . . . , ψ̃

(n′′)
z } the Schmidt orthonormalization of {ψ

(1)
z , . . . ,ψ

(n′′)
z }.

(1) is equivalent to the following: there exist λ1, . . . ,λk ∈ Rn′′ , λl = [λl1, . . . ,λln′′ ]

(l = 1, . . . , k) such that λ1, . . . ,λk are linearly independent and if we set

ϕλl
z (z , x ′) := λlϕz (z , x

′) =
n′′

∑
m=1

λlmϕ
(m)
z (z , x ′),

Hλl (z , x ′, y ′) := ϕλl
z (z , x ′)ϕλl

z (z , x ′)T −
n′′

∑
m=1

∣∣ϕλl
z (z , x ′)ψ̃

(m)
z (z , y ′)T

∣∣2
= λlϕz (z , x

′)
(
IN − ψ̃T

z (z , y
′)ψ̃z (z , y

′)
)
ϕz (z , x

′)T λT
l ,

Hλ(z , x ′, y ′) := [Hλ1(z , x ′, y ′), . . . ,Hλk (z , x ′, y ′)]T ,

for l = 1, . . . , k , then
Hλ(z0, x

′
0, y

′
0) = 0. (2)
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An artificial condition (H)

Condition (H): Let k = 1, . . . , n′′. Suppose that (z0; x0, y0) ∈ CR,k . Suppose that

Hλ(z , x ′, y ′) is the same as that of the previous paragraph and satisfies (2).

Condition (H) is that rank
(
Dz,x ′,y ′H

λ(z0, x
′
0, y

′
0)
)
= 1 holds for any choice of linearly

independent λ1, . . . ,λk ∈ Rn′′ .

Spirit of Condition (H):

• rank one: We refer the case of the geodesic X-ray transform for the dimension. In other

words we fit our case to the geodesic X-ray transform.

• for any choice of λ1, . . . ,λk : We avoid the case that there exist two choices λ1, . . . ,λk

and λ′
1, . . . ,λ′

k such that

{Hλ(z , x ′, y ′)
)
= 1}

⋂
{Hλ′

(z , x ′, y ′)
)
= 1}

is transversal.
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CR,k in G × X×X

Lemma 6

Suppose that Z is a double fibration, N ≧ 2n′′ and some condition (H). For any
k = 1, . . . , n′′, CR,k is an (N + 2n′ − 1)-dimensional embedded submanifold of G×X×X.

Note that the connected component of CR,k containing (z0; x0, y0) is characterized by

F (x ′′, y ′′, z ; x ′, y ′) :=

x ′′ − ϕ(z , x ′)

y ′′ − ψ(z , y ′)

Hλ(z , x ′, y ′)

 = 0 near (z0; x0, y0).

We have

rank
(
DF (x ′′0 , y

′′
0 , z0; x

′
0, y

′
0)
)
= rank

In′′ O ∗
O In′′ ∗
O O Dz,x ′,y ′H

λ(z0, x
′
0, y

′
0)

 = 2n′′ + 1.
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Structure of normal operators



Normal operators without Z -conjugate points

R∗Rf (x) =

(∫∫
Hx×Gz

κ(z , x)κ(z , y)
f

|dX |1/2 (y)dGz (y)dHx (z)

)
|dX (x)|1/2, x ∈ X .

Set C := (N∗Z \ 0)′, which is the canonical relation of R.

Theorem 7

Suppose that Z is a double fibration. In addition, we assume N ≧ 2n′′ and the following:

• πX : Z → X is proper, and π−1
X (x) is connected for any x ∈ X.

• There are no Z-conjugate triplets, and DπL is injective at all (z , ζ, x , η) ∈ C.

Then CT ◦ C is a clean intersection with excess e = N − n, and R∗R is an elliptic

pseudodifferential operator of order −n′ on X .

Proof: Some lemmas in [3] and the assumptions guarantee the Bolker condition.
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Known results on geodesic X -ray transforms with conjugate points

• Let (M, g) be a compact Riemannian manifold with strictly convex boundary.

Set γw (t) := expπM (w )(tw) for w ∈ ∂−SM. Consider the geodesic X-ray fransform

X f (w) :=
(∫ τ(w )

0
κ(γw (t), γ̇w (t))

f

|dM |1/2

(
γw (t)

)
dt

)
|d∂−SM(w)|1/2.

• Stefanov and Uhlmann (2012) [4]: If v0 = |v0|θ0 is a fold conjugate vector at p0, and v0
is the only singularity of expp0(v) on γθ0 near p0, then the localized normal operator is

decomposed as

X ∗χX = A+ F near p0,

where A is a PsDOs of order −1, and F is a FIO of order −n/2.
• Holman and Uhlmann (2018) [2]: If CS = ∅, then

X ∗X = A+
n−1

∑
k=1

Mk

∑
α=1

Fk,α,

where A is a PsDOs of order −1, and F is a FIO of order −(n− k + 1)/2.
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Normal operators with Z -conjugate points

Theorem 8

Suppose that Z is a double fibration, CS = ∅, N ≧ 2n′′, condition (H) and the following:

• πX is proper, and π−1
X (x) is connected for any x ∈ X.

• If π−1
L

(
(z , ζ)

)
= {(z , ζ, x , η)} for (z , ζ, x , η) ∈ C, then DπL|(z,ζ,x,η) is injective.

Then we have a decomposition of R∗R of the form

R∗R = A+
n′′

∑
k=1

∑
α∈Λk

Fk,α,

where A is an elliptic PsDO of order −n′ on X ,

Fk,α is a FIO in I−(n+1−k)/2(X×X , C ′
Ak,α

;Ω1/2
X×X ) with some canonical relation of CFk,α ,

associated to the decomposition of connected components CR,k =
⋃

α∈Λk
CR,k,α.
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Outline of the proof

• R∗R is given by

R∗Rf

|dX |1/2 (x) =
∫∫

Hx×Gz

κ(z , x)κ(z , y)
f

|dX |1/2 (y)dGz (y)dHx (z).

• Follow the idea of Holman and Uhlmann [2]: a partition of unity of G × X × X .

• Set Cδ := {(z ; x , x) : z ∈ G, x ∈ X}, which is related to the elliptic term.

• CR,k,α are disjoint since CS = ∅, so are CR,k,α and Cδ.

Pick up disjoint nbds Uk,α and Uδ of CR,k,α and Cδ respectively in G × X × X .

• We can find an open set U0 in G × X × X such that

U0

⋃
Uδ

⋃
(∪Uk,α) = G × X × X , U0

⋂(
Cδ

⋃
(∪CR,k,α)

)
= ∅.

• Pick up a partition of unity subordinated to {U0,Uδ,Uk,α}, and split the Schwartz kernel

of R∗R. U0-part of R∗R is a smoothing operator, and is absorbed in Uδ-part A.
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