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d-plane transform on R”



d-plane transform on R”

o letn=23,4,..., andletd =1,..., n—1.
e Grassmannian Gg , := the set of all d-dimensional vector subspaces of R".
e For any o € Gy ,, we have an orthogonal decomposition x = x’ + x” € c ® o+ = R".

e Affine Grassmannian G(d, n) := the set of all d-dimensional planes in R”, i.e.,
G(d,n):={(0.x"):0€ Ggp x" €0t}
e The d-plane transform of f € .(IR") is defined by

Ryf (0, x") ::/f(x/+x”)dx’, (0, x") € G(d, n),

g

where dx’ is the Lebesgue measure on .

e Ry and R,_1 are said to be the X-ray transsorm and the Radon transform on R”
respectively, and Ry = R,_1 when n = 2.
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The normal operator of the d-plane transform

e The formal adjoint of Ry of a continuous function ¢ on G(d, n) is explicitly given by
1 n
Rip(x ::7/ x+ k- o) dk,
d(p( ) C(d, n) O(n) (P( )
where C(d, n) = (47)9T(n/2)/T((n—1)/2), T(-) is the gamma function, O(n) is the
orthogonal group, dk is the normalized measure which is invariant under rotations, and
0 € Gq,p is arbitrary. Ry and R} are elliptic Fourier integral operators.

e The normal operator is RjRy = (—Amn)*dﬂ, and the excess e for R} Ry, which is the
degeneracy of the phase function of R}Ry, is

e=dim(G(d,n)) —dim(R") = (d+1)(n—d)—n=d(n—d—1).

This gives the inversion formula f = (—Agn)?/2R5Ryf for f(x) = O((x)~947¢).
e We can consider the invertibility for more general operators arising in integral geometry via
the normal operators.
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X-ray transform on R?

Let n = 2. The X-ray transform of a function f of (x,y) € R? is defined by

gee)

Rif(0, 1) := /

—00

f(tcos® —ssinf, tsinf +scosB)ds, (6,t) € [0, ] x R.

0- =g 30 1o cn— 50

Original Grayscale Image

unfiltered Backprojection

Sinogram (X-ray transform) 0\
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Conormal distributions




Conormal distributions

Definition 1 (Conormal distributions)

Let X be an N-dim manifold, and let Y be a closed submanifold of X. u &€ .@’(X) is said to
be conormal with respect to Y of degree m if

Li---Lmu € CHES, y/ay(X)

forall M =0,1,2,... and all vector fields L1, ..., Ly tangential to Y. Denote by
I™(X, N*Y'), the set of all distributions on X conormal with respect to Y of degree m.

Note that N} Y := T;X/T;Y forany y € Y. If u € I™(X, N*Y), then WF(u) C N*Y \ 0.

Ulleo Ny i= Sup /
|| H H(s)(IR ) j=0,1,2,... < A

Y

1/2
<¢>2S|a<¢>|2d¢) |
Ag:={lg] <1}, Aj={21<|g<2}j=123,....
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Conormal distributions and oscillatory integrals

Proposition 2 (Characterization of conormal distributions)

Let x = (x',x") € RK x RNk and let Y = R* x {0} = {x” = 0}. Then u € 2'(RN)
belongs to IM+k/2=N/4(Rn N*Y) if and only if there exists an amplitude

a(x", & € S™(RN=k x R¥) such that

u(x) = ‘/]Rk eix’-é’a(xll'gl)dcl_

We can replace the conormal bundle N*Y by more general Lagrangian distributions A. The
elements of /™ (X, A) is said to be Lagrangian distributions on X. These are characterized as
oscillatory integrals with more general phase functions. The distributions kernels of Fourier
integral operators are Lagrangian distributions. Rigorously we should use the set of distribution
section of the half-density bundle /I™(X, A; Q}{Z).
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Examples of conormal distributions

® Xp € /71/27"/4(N*8D), where D is a domain in R” with smooth boundary.
e Set A= {(x,x):x € RN}. If a(x,&) € S"(RN x RN), then

K(x,y) = / , el a(x, &) dE € IM(RN x RN, N*A).
JR
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Double fibration transforms



Double fibration

Following Mazzucchelli-Salo-Tzou [3], we introduce double fibration transforms.

Let G and X be oriented smooth manifolds without boundaries. N := dim(G) and
n:=dim(X). Denote by dG and dX the orientation forms of G and X respectively.

Let Z be an oriented embedded submanifold of Gx X, and let dZ be the orientation form.
Assume that N+ n > dim(Z) > N =2 n = 2, and set n’ :=dim(Z) — N and n” :=n—n’.
Thendim(Z)=N+n',n=n"+n"and n',n" =1,...,n—1.

S (N*Z\ 0)
i/ \:TX ‘V w\
g A T*G\0 T*X\ 0

We assume that Z is a double fibration, that is, the natural projections g : Z—G and
tx : Z— X are submersions respectively.
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Orientation forms on G, := 71,0 7757 (2) and Hy := 71g o Tt (x)

o G, =70 ngl(z) becomes an n’-dim submanifold of X for any z € G, and
Hy := 11g o 7t (x) forms an (N — n')-dim submanifold of G for any x € X.

e Fix arbitrary (z,x) € Z, and let {v1,..., vy} and {wy, ..., wy} be bases of T, X and
T,G respectively such that

VgL = span{vy, ..., Vy, Wy, ..., wy) =span{vy, ..., Vy, Wi, ..., Wy_p).
The induced orientation forms dG, on G, and dHyx on Hy are given by
dGz(dﬂx(vl), R dnx(v,,/)) L= dZn§1(Z)(V1, ey Vn/)

_ dZ(vi, .-\ Vy, we, ..., Wy)
dg(dﬁg(wl) ..... dﬂg(WN)> '

dHX(dTCg(Wl), 000 dn—X(Wan”» = dZ;-[;(l(X)(le ceey Wan”)
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Double fibration transform

Suppose that a weight function x(z, x) € C®(G X X) is nowhere vanishing. A double fibration
transform R associated with the double fibration Z is defined by

RA) 1= ([ #(e0) g7 (0962 ) 14(2) 17

for f € 2(X,0Y/?). The adjoint R* is given by

u

Reule) = (f, e graraelaice) ) ax( 2
for u e 92(G, Qé/z). Then we deduce that
R: (X, Q%) = £(G.01?)., R*:2(6.05?) = £(X,0?),

are continuous linear mappings, and so are
R:&' (X, Q%) = 2'(G.0F?), R*:£(6.0F%) = 2'(X,Q)?).

More precisely R and R* are elliptic Fourier integral operators.
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Mapping properties of double fibration transforms

Theorem 3 ([3, Theorem 2.2] & [Hormander IV, Theorem?25.2.2)

Suppose that Z is a double fibration with dim(Z) = N + n’. Then R and R* are elliptic
Fourier integral operators of order —(N + 2n’ — n) /4 with canonical relations (N*Z \ 0)’ and
((N*Z\0)T)" respectively. More precisely

R e I_(/\/+2n’—n)/4(g><X, N*Z\ 0; Qé/xzx)

R* c If(/v+2n’fn)/4(x xG,(N*Z\0)" Q;/ng)

where

N*Z\0={(z,A(z,x)n,x,n7) : (z,x) € Z,7 € N;G;\ {0}}
{( ., x,B(z, x)é) :(z,x) e Z,C € N;HX\{O}},

A(z,x) € Hom(N; G,, T;G) and B(z, x) € Hom(N} Hy, T;:X) smoothly depend on

(z,x) € Z respectively.
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Examples of double fibration transforms

e d-plane transform on R": G := G(d, m), X :=R".

e Geodesic X-ray transform: Let (M, g) be a compact and nontrapping Riemannian
manifold with a strictly convex boundary. Denote by v(x) the unit outer normal vector at
x € M. Then

G:=0_SM={(x,u) € SM: x € OM, (u,v(x)) <0}, X:=M™

e Null bicharacteristics: Let P be a real-principal-type pseudodifferential operator on a
manifold X with the principal symbol pp,(x, ). Let G be the set of all Hamilton flows for
pm(x,&) =0 on T*X, and consider the integration over all the v € G.

e Light ray transform: This is a special case of the above. Let (M, g) be a Lorentzian
manifold, and set P be the d’Alembertian.
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Z-conjugate points




Preliminaries

. - " / 1" i
For local coordinates (z,x) = (2, 2", x',x") € RN="" x R" x R" x R"", There exist

R™ -valued functions ¢(z, x') and b(x, z') such that we have locally
Z = {x" = g(z.x)} = {2 = b, 2)}.

Lemma 4 ([3, Lemmas 2.4, 2.5 and 2.6])

N(*z,x)Z _ {(—QDZ(Z,X,)Tﬂ”, (_(Px’ (z, X/)TU"' 17//)) : 17// c IR"”}'
— / / T /!
A(z, x) [ Px gzﬂyx ) 1 17// _ _¢Z(Z’X/)T17//’ 17// cR"

Similar results hold for b(x,z') and B(z, x).
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Variation fields and conjugate points

Fix arbitrary (z, W) € TG, and consider a curve in G of the form
2(s) = z+sw+ O(s?) near s=0.

Then (G,(5)) is said to be a variation of G, and the variation field Ju, : G; — (N3 G;)*
associated to (G,(s)) is defined by

Jw(x) = Az, x)*w ~ —p,(z, X' )w € (N;G;)* ~ NyG, = T, X/ T«G,
for x € G;. Note that T;Hy = Ker(A(z,x)*) since ¢(z(s), x") = x" for z(s) € Hy, and
A(z, x)* € Hom(T;G, (N5 G;)*) ~ Hom(T;G, NxG;), (z.x) € Z,
For z € G and x,y € G, set
Vz(x,y) i= {Jw(x) : w € T2G, Ju(y) = 0}

Note that dim(V;(x,y)) < n” holds since rank(A(z, x)*) = n”, and
dim(Vz(x,y)) = dim(V;(y, x)) holds for any z € G and x,y € G;.

cf. If x = exp, (tu), then Jy(x) = Y(t) := tDexp, (tu)w. 14/



Z-conjugate triplets

Definition 5
Suppose that Z is a double fibration and N = 2n”. Let k =1,...,n".

e Z-conjugate triplet of degree k: Let z € G and let x,y € G, with x#y. We say that
(z;x,y) is a Z-conjugate triplet of degree k if dim(V;(x,y)) = n" — k.

e Regular Z-conjugate triplet of degree k: We say that a Z-conjugate triplet (z; x, y) of
degree k is regular if there exit a nbd Uy of x in X, a nbd U, of y in X, and a nbd W, of
z in G such that any Z-conjugate triplet (Z/; x’,y’) € W, x Uy X Uy is also of degree k.
The set of all the regular Z-conjugate triplets of degree k is denoted by Cg .

e The set of all the Z-conjugate triplets which are not regular is denoted by Cs.

15/24



How to describe Z-conjugacy 1/2

Let (z9; x0, yo) be a Z-conjugate triplet of degree k = 1,..., n". Z is locally expressed by ¢
and P as {x”" = ¢(z,x')} near (29, x0) and {y” = ¥(z,y’)} near (2, yo) respectively, and

Vo (X0, 0) = {¢Z(ZO,X6)W: w € Ker(t[;z(z(),yé))}.

o'’ n 1 n'
Set ¢ = [¢(1),,;..,¢( NT and p = [pD), ..., (")) T . Then {(])é o cp§ )} and
{lﬁgl) ,,,,, i )} are linearly independent near (zg, xp) and (zg, yp) respectively. Note that

Ker(l/Jz(ZOvY(/))) = Span<lpgl)(zo,yé)-r ..... 1,[197”)(20,)/(’))7—>L in RN

dim (span<¢§1)(zo, XQ)s - ¢§””> (z0.x0)) N span<1p£1)(zo, Yo)reees 4)97”) (20, yé))) =k. (1)

We express (1) by k equations.
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How to describe Z-conjugacy 2/2

Denote by {lpél)’ 200 ~§n//>} the Schmidt orthonormalization of {lljgl), co IPE"N)}.

(1) is equivalent to the following: there exist A1,..., Ay € R, Ar= (A, Apr]
(I=1,..., k) such that Aq,..., A are linearly independent and if we set

Mi(z2,X') = Mpa(z,X') "2 Ampi™ (2,5),

HY (2,5, y') o= g (2, X )9 (2, X') Zl|4> P (2,)T P
= Migo(2, X)) Iy = BT (2. )22, ¥')) b (2. ) AT,
HM (2,5, y') = [HM (2,6, '), HM (2,6 )] T

for | =1,..., k, then
H* (20, x5, ¥9) = 0. (2)
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An artificial condition (H)

Condition (H): Let k =1,...,n". Suppose that (z9; x0, yo) € Cr k. Suppose that
H)‘(z,x’,y’) is the same as that of the previous paragraph and satisfies (2).
Condition (H) is that rank (D, .., H* (20, x4, ¥)) = 1 holds for any choice of linearly
independent Aq,..., A € R,

Spirit of Condition (H):

e rank one: We refer the case of the geodesic X-ray transform for the dimension. In other
words we fit our case to the geodesic X-ray transform.

e for any choice of Aq,..., A, We avoid the case that there exist two choices Aq,..., Ax
and Af, ..., A such that

{H)‘(z,x’,y’)) = l}ﬂ{HN(z,X/,y/)) =1}

is transversal.
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CR,k in G x XxX

Lemma 6

Suppose that Z is a double fibration, N = 2n"" and some condition (H). For any
k=1,..., n", Cr is an (N + 2n" — 1)-dimensional embedded submanifold of Gx X xX.

Note that the connected component of Cg x containing (zo; xo, yo) is characterized by

X" = p(z.x)
F(X"y" z;x' y') = |y — P(z,y')| =0 near (z0;x0,¥0)-
HA (2%, y')
We have
/n” O >k
rank(DF(xé’,y(’)’,zo;x(’),y(’))) =rank | O Iu * =2n" 4+ 1.

O O Dz,x’,y/H/\(ZO’ X0, ¥0)
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Normal operators without Z-conjugate points

f

RRA) = ([[, o FEIrle ) o ()6 )abh(2) ) [ (2, x e x.

Set C := (N*Z\ 0)’, which is the canonical relation of R.

Theorem 7
Suppose that Z is a double fibration. In addition, we assume N 2> 2n" and the following:

o 7Ty : Z — X is proper, and n;l(x) is connected for any x € X.

e There are no Z-conjugate triplets, and D7t is injective at all (z, g, x, 17) eC.

Then CT o C is a clean intersection with excess e = N — n, and R*R is an elliptic
pseudodifferential operator of order —n' on X.

Proof: Some lemmas in [3] and the assumptions guarantee the Bolker condition. O
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Known results on geodesic X-ray transforms with conjugate points

e Let (M, g) be a compact Riemannian manifold with strictly convex boundary.
Set Yw (t) 1= expy,, (w)(tw) for w € 9_SM. Consider the geodesic X-ray fransform

T(w)
Xf(w):= (/0 x('yw(t),y'w(t))w(yw(t))dt) |dd_SM(w)|1/2.

e Stefanov and Uhlmann (2012) [4]: If vo = |vp|6p is a fold conjugate vector at pg, and v
is the only singularity of exppo(v) on ‘yg, near pg, then the localized normal operator is
decomposed as

X*xX =A+F near pp,
where A is a PsDOs of order —1, and F is a FIO of order —n/2.
e Holman and Uhlmann (2018) [2]: If Cs = @, then

n—1 Mk

XX =A+Y Y Fea
k=1a=1

where A is a PsDOs of order —1, and F is a FIO of order —(n— k +1)/2.
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Normal operators with Z-conjugate points

Theorem 8
Suppose that Z is a double fibration, Cs = @, N = 2n", condition (H) and the following:

e 7Tx is proper, and n}l(x) is connected for any x € X.
o Ift;1((2.0)) ={(2.5.x.n)} for (2., x,17) € C, then D7y |(z.gx,) 1 injective.

Then we have a decomposition of R*R of the form

n//

R'R=A+Y Y Fiu
k=1waeA,

where A is an elliptic PsDO of order —n’ on X,
Fk« is a FIO in Z-(mM1-K)/2(x x X, C’ Q}{Xx) with some canonical relation of Cf, ,
associated to the decomposition of connected components Cr x = Uxepn, CR k-
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Outline of the proof

e R*R is given by

iz = [, M) e ()G ().

e Follow the idea of Holman and Uhlmann [2]: a partition of unity of G x X x X.
e Set C5:={(z;x,x) : z € G,x € X}, which is related to the elliptic term.

o Cg i are disjoint since Cs = @, so are Cg k , and C;.
Pick up disjoint nbds Uy , and Us of Cg k , and Cj respectively in G x X x X.

e We can find an open set Up in G X X x X such that

UOU Us U(UUk,D() =G x X xX, Uoﬂ(CzS U(UCR,k,rx)> =00.

e Pick up a partition of unity subordinated to {Up, Us, Uk o }, and split the Schwartz kernel
of R*R. Up-part of R*R is a smoothing operator, and is absorbed in Us-part A.
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