# Geodesic X-ray transform and streaking artifacts on simple surfaces or on spaces of constant curvature

Hiroyuki Chihara (University of the Ryukyus)

3-6 June 2024

International Conference on Analysis and Applications City University of Hong Kong



## X-ray transform on the plane

• All the planar lines are parametrized by  $( heta,t)\in [0,\pi] imes \mathbb{R}$  by

$$\ell = \left\{ \left( -s\sin\theta + t\cos\theta, s\cos\theta + t\sin\theta \right) : s \in \mathbb{R} \right\}.$$

The X-ray transform of f(x, y) on  $\mathbb{R}^2$  is defined by

$$\mathcal{R}f(\theta, t) := \int_{\ell} f = \int_{-\infty}^{\infty} f(-s\sin\theta + t\cos\theta, s\cos\theta + t\sin\theta) ds.$$

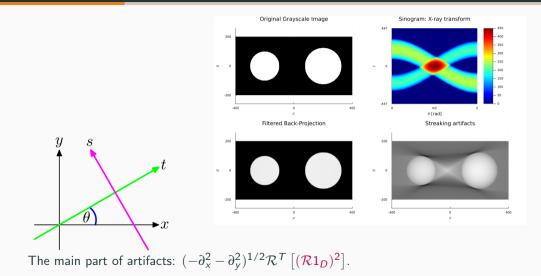
This is considered to be the measurements of CT scanners for normal tissue. The FBP formula  $f = (-\partial_x^2 - \partial_y^2)^{1/2} \circ \mathcal{R}^T \circ \mathcal{R}f$  is well-known.

• We consider a model of human body *f* containing a metal region *D* such as dental implants, stents in blood vessels, and etc. We observe that the metal streaking artifacts caused by beam hardening effect in the energy level of X-ray. The main term is the filtered back-projection of nonlinear term

$$(-\partial_x^2 - \partial_y^2)^{1/2} \circ \mathcal{R}^T [(\mathcal{R} \mathbb{1}_D)^2],$$

This is a conormal distribution whose singular support is the streaking artifact.

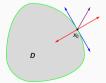
## Figures: metal streaking artifacts



#### **Definition 1 (Conormal distributions)**

Let X be an N-dim manifold, and let Y be a closed submanifold of X. We say that  $u \in \mathscr{D}'(X)$  is conormal with respect to Y of degree m if  $L_1 \cdots L_{\mu} u \in {}^{\infty}H^{\text{loc}}_{(-m-N/4)}(X)$  for all  $\mu = 0, 1, 2, \ldots$  and all vector fields  $L_1, \ldots, L_{\mu}$  tangential to Y. Denote by  $I^m(N^*(Y))$  the set of all distributions on X conormal wrt Y of degree m. Note that  $WF(u) \subset N^*(Y) \setminus 0$ .

The characteristic function of a domain:
1<sub>D</sub> ∈ I<sup>-1/2-n/4</sup>(N\*(∂D)) for D ⊂ ℝ<sup>n</sup>, which is a domain with smooth boundary.



• The Schwartz kernel of a PsDO:  $\int_{\mathbb{R}^n} e^{i(x-y)\cdot\xi} a(x,\xi) d\xi \in I^m(N^*(\Delta)),$   $\Delta = \{(x,x)\} \text{ for } a(x,\xi) \in S^m(\mathbb{R}^n \times \mathbb{R}^n).$ 

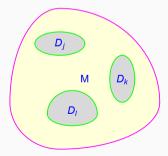


# Assumption

- Suppose that (M, g) is a compact nontrapping simple Riemannian manifold with strictly convex smooth boundary.
- In addition we assume that  $\dim(M) = 2$  or (M, g) is a space of constant curvature.

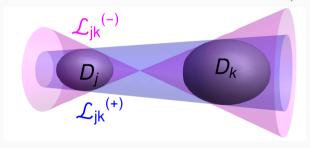
This ensures that all the Jacobi fields are of the form scalar function  $\times$  parallel transport.

 Suppose that the metal region D ⊂ M<sup>int</sup> is a disjoint union of D<sub>j</sub> (j = 1..., J) which are simply connected, strictly convex and bounded with smooth boundaries ∂D<sub>j</sub>.



# A hypersurface $\mathscr{L}$ surrounding the metal region D

- For any j and  $x \in \partial D_j$ , denote by  $\nu_j(x)$  the unit outer normal vector at x. Consider the tangent hyperplane  $\exp_x \nu_j(x)^{\perp} \cap M^{\text{int}}$  at  $x \in \partial D_j$ .
- There are some common tangent hyperplanes of  $\partial D_j$  and  $\partial D_k$  for  $j \neq k$ . In this case there is common tangent geodesics in such hyperplanes. The union of all these geodesics forms a conical or cylindrical hypersurface denoted by  $\mathscr{L}_{jk}^{(\pm)}$ . Set  $\mathscr{L} := \bigcup \left( \mathscr{L}_{jk}^{(+)} \cup \mathscr{L}_{jk}^{(-)} \right)$ .



# Main Theorem

The geodesic X-ray transform of a function f on M is defined by

$$\mathcal{X}f(\gamma_w) := \int_0^{\tau(w)} f\big(\gamma_w(s)\big) ds, \quad \nabla_{\dot{\gamma}_w(s)} \dot{\gamma}_w(s) = 0, \quad \dot{\gamma}_w(0) = w \in \partial_- S(M),$$

where  $\tau(w)$  is the exit time of  $\gamma_w$ . The nonlinear part of the CT image is supposed to be

$$f_{\mathsf{MA}} := f_{\mathsf{CT}} - f_{\mathsf{normal}} = \sum_{k=1}^{\infty} A_k Q \mathcal{X}^{\mathsf{T}}[(\mathcal{X} \mathbb{1}_D)^{2k}] \mod C^{\infty}(M^{\mathsf{int}}), \quad \{A_k\} \subset \mathbb{R},$$

where Q is a parametrix of  $\mathcal{X}^T \circ \mathcal{X}$ :  $Q \mathcal{X}^T \mathcal{X} = Id$  modulo smoothing operators locally.

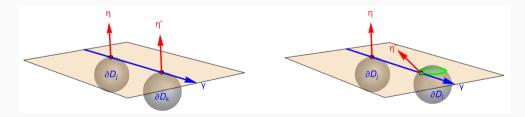
#### Theorem 2

 $f_{MA} \in I^{-3n/4-1/2}(N^*(\mathscr{L}))$  away from  $\partial D$ , and  $\sigma_{prin}(Q\mathcal{X}^T[(\mathcal{X}1_D)^2]) \neq 0$ .

- Park-Choi-Seo (2017) proved that  $WF(f_{MA}) \subset N^*(\mathscr{L})$  for  $M = \mathbb{R}^2$ .
- Palacios-Uhlmann-Wang (2018) proved Theorem 2 for  $M = \mathbb{R}^2$ .
- C (2022) proved Theorem 2 for the *d*-plane transform on  $\mathbb{R}^n$ .

# What does Theorem 2 say?

- If  $\partial D_j$  and  $\partial D_k$  have a common tangent hyperplane, then the conormal singularities propagate along the common tangent geodesic. See the left figure.
- Suppose n ≥ 3. If ∂D<sub>j</sub> and ∂D<sub>k</sub> have a common tangent geodesic, but the conormal directions at the tangent points are different, then the conormal singularities do not propagate along the common tangent geodesic. See the right figure.



## How to prove Theorem 2

• The canonical relation  $C_{\mathcal{X}}$  of  $\mathcal{X}$ :  $(\xi, \eta) \in C_{\mathcal{X}}$  if  $\exists v \in S(M^{\text{int}})$  such that

 $\xi \in T^*_{F(v)}\big(\partial_-S(M)\big) \setminus \{0\}, \quad \eta \in T^*_{\pi_M(v)}(M^{\mathsf{int}}) \setminus \{0\}, \quad DF|_v^T \xi = D\pi_M|_v^T \eta,$ 

where  $F: S(M) \ni \dot{\gamma}_w(t) \mapsto w \in \partial_- S(M)$  for any t. See Holman-Uhlmann (2018).

• If  $\xi, \tilde{\xi} \in T^*_w (\partial_- S(M))$ ,  $w = F(v) = F(\tilde{v})$ ,  $\pi_M(v) \in \partial D_j$ ,  $\pi_M(\tilde{v}) \in \partial D_k$ ,

 $DF|_{v}^{T}\tilde{\xi} = D\pi_{M}|_{v}^{T}\eta, \quad \eta \in N_{v}^{*}(\partial D_{j}) \setminus \{0\}, \quad DF|_{\tilde{v}}^{T}\tilde{\xi} = D\pi_{M}|_{\tilde{v}}^{T}\tilde{\eta}, \quad \tilde{\eta} \in N_{\tilde{v}}^{*}(\partial D_{k}) \setminus \{0\},$ 

then  $\xi$  and  $\tilde{\xi}$  are linearly independent, and the nonlinear effect on the geodesic  $\gamma_w \simeq w$  creates two-dimensional singularity span $\langle \xi, \tilde{\xi} \rangle$  in  $T^*_w(\partial_- S(M))$ .

If η is parallel to η̃, then C<sup>T</sup><sub>X</sub> ∘ span⟨ξ, ξ̃⟩ becomes the parallel transport of ℝη along γ<sub>w</sub>.
Otherwise, C<sup>T</sup><sub>X</sub> ∘ span⟨ξ, ξ̃⟩ = ℝη ∪ ℝη̃.

- H. S. Park, J. K. Choi and J. K. Seo, *Characterization of metal artifacts in X-ray computed tomography*, Comm. Pure Appl. Math., **70** (2017), pp.2191–2217.
- B. Palacios, G. Uhlmann and Y. Wang, *Quantitative analysis of metal artifacts in X-ray tomography*, SIAM J. Math. Anal., **50** (2018), pp.4914–4936.
- S. Holman and G. Uhlmann, *On the microlocal analysis of the geodesic X-ray transform with conjugate points*, J. Diff. Geom., **108** (2018), pp.459—494.
- H. Chihara, Microlocal analysis of d-plane transform on the Euclidean space, SIAM J. Math. Anal., 54 (2022), pp.6254–6287.
- H. Chihara, Geodesic X-ray transform and streaking artifacts on simple surfaces or on spaces of constant curvature, arXiv:2402.06899.